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Abstract

Staggered grid Lagrangian schemes for compressible hydrodynamics involve a choice of how internal energy is
advanced in time. The options depend on two ways of defining cell volumes: an indirect one, that guarantees total energy
conservation, and a direct one that computes the volume from its definition as a function of the cell vertices. It is shown
that the motion of the vertices can be defined so that the two volume definitions are identical. A so modified total energy
conserving staggered scheme is applied to the Coggeshall adiabatic compression problem, and now also entropy is basically
exactly conserved for each Lagrangian cell, and there is increased accuracy for internal energy. The overall improvement as
the grid is refined is less than what might be expected.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this note we construct a modification of the classic staggered grid Lagrangian compressible hydrodynam-
ics scheme as described, for example, in [2]. With this modification we remove the ambiguity in the definition
of cell volume that results from requiring both total energy conservation and the modeling of the internal
energy advance from the differential equation de

dt þ p dð1=qÞ
dt ¼ 0. This is brought about by appropriately relating

the motion of cell vertices to the cell volume change. Our approach is algebraic and simply stated. We then test
this modification on the Coggeshall adiabatic compression problem [5]. We observe that now in addition to
energy conservation the cell entropies are almost exactly conserved.

In the staggered scheme there are two sets of variables. First, for definiteness specifically in two dimensions,
there is a set of indexed nodes or vertices at which the variables are coordinates (xi,yi), velocities (ui,vi),
and nodal masses mi. Next, there is a set of indexed cells at which the variables are cell volumes Vj, masses
mj, densities qj, specific internal energies ej, and pressures pj. The set of cell (resp. node) indexes is J (resp.
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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I). Both sets of data are given at the start of a time step. Nodal and cell masses are Lagrangian, that is,
independent of time, and qj = mj/Vj. Pressure is given by an equation of state, pj = p(qj,ej). The set of nodes
i belonging to the same cell j is Ij. Likewise the set of cells j sharing the same node i is Ji

Two critical but standard assumptions follow, namely:

(i) the volume of any cell is a computable function of the nodal coordinates; typically, the volume of a cell
will only depend on those nodes that are the vertices of the cell;

(ii) the velocities are constant during the time step. If those velocities are ð�ui;�viÞ, we can define the nodal
coordinates as functions of time in the interval (tn, tn+1 = tn + Dt) for t 2 [tn, tn+1] as
1 In
zone/c
origina
our no
xiðtÞ ¼ xn
i þ �uiðt � tnÞ; yiðtÞ ¼ yn

i þ �viðt � tnÞ;

so that
xnþ1
i ¼ xn

i þ �uiDt; ynþ1
i ¼ yn

i þ �viDt:
This defines cell volume Vj as a function of time, and we have the identity
V nþ1
j � V n

j ¼
Z tnþ1

tn

dV j

dt
dt ¼

X
i2Ij

�ui

Z tnþ1

tn

oV j

oxi
dt þ

X
i2Ij

�vi

Z tnþ1

tn

oV j

oyi

dt: ð1Þ
Noting that �ui ¼ ðxnþ1
i � xn

i Þ=Dt;�vi ¼ ðynþ1
i � yn

i Þ=Dt, (1) is just another way of writing the cell volume at time
tn+1, V nþ1

j , as a function of the coordinates at time tn+1. Specific instances of this are given in Section 2.
We define matrices A and B by their entries
Aji ¼
Z tnþ1

tn

oV j

oxi
dt; Bji ¼

Z tnþ1

tn

oV j

oyi

dt; ð2Þ
with j 2 J and i 2 I, so that A and B are rectangular sparse sized jJj � jIj matrices, where jIj is the size of
I. They will play a role in the evolution of the hydrodynamic variables since (1) becomes
V nþ1
j � V n

j ¼
X
i2Ij

ðAji�ui þ Bji�viÞ: ð3Þ
An important point to emphasize here is that A and B are not in general simple time averages of the integ-
rands, except in the case of Cartesian coordinates.

2. Momentum, energy, entropy

2.1. Momentum

The differential equations for momentum are
q
du
dt
¼ �ðgradpÞx; q

dv
dt
¼ �ðgradpÞy :
Staggered grid momentum difference equations have the form
miðunþ1
i � un

i Þ ¼
X
j2Ji

pjaij; miðvnþ1
i � vn

i Þ ¼
X
j2Ji

pjbij; ð4Þ
where the matrix a involves geometrical grid vectors so that
P

j2Ji
pjaij is an approximation of the integral of

the pressure gradient in x direction over cell indexed j, likewise for b. Matrices a and b are rectangular sparse
jIj � jJj.1 We now set �ui ¼ 1

2
ðunþ1

i þ un
i Þ, �vi ¼ 1

2
ðvnþ1

i þ vn
i Þ. To each pressure pj there will be added an artificial
[4] the momentum equations corresponding to (4) can be seen on page 575 Eq. (2.1); it involves the ‘‘corner force” entity: f~pz for a
ell z and a point/node p of z. Indeed we urge the reader to consult Section 2 of [4, pp. 575–577] to get a detailed description of the
l staggered Lagrangian scheme viewed from a different perspective. The corner force in x direction from this work corresponds in
tation to 1

Dt pjaij.
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viscosity qj to deal with shock waves. However, we take q to be zero in our analysis and in the example pre-
sented later.

2.2. Energy

Kinetic energy is a nodal quantity for any time tn, Kn
i ¼ 1

2
miððun

i Þ
2 þ ðvn

i Þ
2Þ, and the total kinetic energy is

Kn ¼
P

i2IKn
i . Then since
2 Eq
3 See
1

2
miððunþ1

i Þ
2 � ðun

i Þ
2Þ þ 1

2
miððvnþ1

i Þ
2 � ðvn

i Þ
2Þ ¼ �ui

X
j2Ji

pjaij þ �vi

X
j2Ji

pjbij;
that is to say Knþ1
i � Kn

i ¼ �ui
P

j2Ji
pjaij þ �vi

P
j2Ji

pjbij, the change in total kinetic energy is
Knþ1 � Kn ¼
X
i2I

�ui

X
j2Ji

pjaij þ
X
i2I

�vi

X
j2Ji

pjbij:
The total energy is taken to be the sum of the total nodal kinetic energy and total cell internal energy, that
is, E ¼

P
j2Jmjej

� �
þ K. Then energy conservation requires that (En+1 � En) = 0, that is to sayP

j2Jmjðenþ1
j � en

j Þ
� �

þ ðKnþ1 � KnÞ ¼ 0, or
X
j2J

mjðenþ1
j � en

j Þ þ pj

X
i2Ij

�uiaij þ pj

X
i2Ij

�vibij

 !
¼ 0:
Thus a sufficient condition for energy conservation, no matter how the a and b matrices have been defined, is that
for any cell, the internal energy evolution be2
mjðenþ1
j � en

j Þ þ pj

X
i2Ij

ð�uiaij þ �vibijÞ ¼ 0: ð5Þ
2.3. Entropy

For adiabatic flows the entropy S satisfies T dS
dt ¼ de

dt þ p dð1=qÞ
dt ¼ 0. The Lagrangian difference expression of

this, according to (3), is
mjðenþ1
j � en

j Þ þ pjðV nþ1
j � V n

j Þ � mjðenþ1
j � en

j Þ þ pj

X
i2Ij

ð�uiAji þ �viBjiÞ ¼ 0: ð6Þ
It can now be seen that there are two implied volume definitions,3 following from (5) and (6). They will be iden-
tical if for all i 2 I, j 2 J
aij ¼ Aji and bij ¼ Bji: ð7Þ

and then we will have both total energy conservation and (6).

This is different from the approach in, e.g. [1], where the a and b matrices are chosen in order to satisfy some
symmetry conditions and then the A and B matrices are defined by (7), in which case (3) cannot be expected to
hold. Indeed, the discrepancy between

P
i2Ij
ð�uiaij þ �vibijÞ and ðV nþ1

j � V n
j Þ for the area-weighted scheme of [1]

and its effect on stability is the subject of [4].

3. Two geometries

For specific examples we need to indicate the relation between nodes and cells and we have to compute the
volume change matrices A and B.
. (5) can be seen in [4, Eq. (2.2), p. 575], or in [2, Eqs. (12) and (13), p. 234–235].
the discussion in [2, Section 2.3, pp. 244–245], where this volume inconsistency is referred as to an entropy error.
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3.1. 1D spherical coordinates

Each cell at half-index iþ 1
2

has vertices ri and ri+1. The volume of the cell is V iþ1
2
¼ 1

3
ðr3

iþ1 � r3
i Þ, so
4 Fo
V nþ1
iþ1

2
� V n

iþ1
2
¼ �uiþ1

Z tnþ1

tn
ðrn

iþ1 þ �uiþ1ðt � tnÞÞ2 dt � �ui

Z tnþ1

tn
ðrn

i þ �uiðt � tnÞÞ2 dt

 !

¼ Aiþ1
2;iþ1�uiþ1 þ Aiþ1

2;i
�ui

� �
; ð8Þ
where
Aiþ1
2;k
¼

� Dt
3
ððrn

i Þ
2 þ ðrnþ1

i Þ
2 þ rn

i rnþ1
i Þ if k ¼ i

Dt
3
ððrn

iþ1Þ
2 þ ðrnþ1

iþ1 Þ
2 þ rn

iþ1rnþ1
iþ1 Þ if k ¼ iþ 1

0 if k 6¼ i; k 6¼ iþ 1

8><
>:
By (7) the momentum equation must therefore be given by
miðunþ1
i � un

i Þ ¼ ai;iþ1
2
piþ1

2
þ ai;i�1

2
pi�1

2
� Aiþ1

2;i
piþ1

2
þ Ai�1

2;i
pi�1

2
;

or,
miðunþ1
i � un

i Þ ¼ �Dt
1

3
ððrn

i Þ
2 þ ðrnþ1

i Þ
2 þ rn

i rnþ1
i Þ piþ1

2
� pi�1

2

� �
: ð9Þ
Then, in order to get the volume consistency in 1D spherical symmetry the approximate pressure gradient
must be given by the right hand side of (9). As seen in Section 1 it uniquely implies the discretization of
the energy equation (5) to get total energy conservation.

3.2. 2D cylindrical coordinates

In cylindrical r–z coordinates, for a generic quadrilateral cell Vj with counter-clockwise ordered vertices
(1,2,3,4) with coordinates (ri,zi) (functions of t),4 the cell volume is (with indices defined by periodicity)
V j ¼
1

6

X4

i¼1

ðr2
i þ r2

iþ1 þ ririþ1Þðziþ1 � ziÞ: ð10Þ
Looking at vertex i,
oV j

ori
¼ 1

6
ðð2ri þ riþ1Þðziþ1 � ziÞ þ ð2ri þ ri�1Þðzi � zi�1ÞÞ. However, the volume also is
V j ¼
1

6

X4

i¼1

ðriziþ1 þ riþ1zi þ 2ðrizi þ riþ1ziþ1ÞÞðriþ1 � riÞ; ð11Þ
so
oV j

ozi
¼ 1

6
ðð2ri þ riþ1Þðriþ1 � riÞ þ ð2ri þ ri�1Þðri � ri�1ÞÞ. Now we just need to use the fact that for two func-

tions a(s) and b(s) linear in [0, 1]
Z 1

0

aðsÞbðsÞds ¼ 1

6
½að0Þbð1Þ þ að1Þbð0Þ þ 2fað0Þbð0Þ þ að1Þbð1Þg�:
Thus, if we define
Ri!j ¼ ð2rn
i þ rn

j Þðznþ1
j � znþ1

i Þ þ ð2rnþ1
i þ rnþ1

j Þðzn
j � zn

i Þ þ 2fð2rn
i þ rn

j Þðzn
j � zn

i Þ þ ð2rnþ1
i þ rnþ1

j Þðznþ1
j � znþ1

i Þg;

Zi!j ¼ ð2rn
i þ rn

j Þðrnþ1
j � rnþ1

i Þ þ ð2rnþ1
i þ rnþ1

j Þðrn
j � rn

i Þ þ 2fð2rn
i þ rn

j Þðrn
j � rn

i Þ þ ð2rnþ1
i þ rnþ1

j Þðrnþ1
j � rnþ1

i Þg;
it is seen that
V nþ1
j � V n

j ¼
Dt
36
fð�u1½R1!2 � R1!4� þ �u2½R2!3 � R2!1� þ �u3½R3!4 � R3!2� þ �u4½R4!1 � R4!3�Þ

þ ð�v1½Z1!2 � Z1!4� þ �v2½Z2!3 � Z2!1� þ �v3½Z3!4 � Z3!2� þ �v4½Z4!1 � Z4!3�Þg;
r example see Fig. 1 in [4, p. 575].
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and this defines the matrix elements of (3). A and B being defined, it uniquely implies the discretizations of (4)
and (5) in order to get volume consistency and total energy conservation.

The above expressions were easily incorporated into the ALE-INCUBATOR [3] code in order to obtain the
computations in Section 4.

4. The full predictor corrector scheme and the Coggeshall cylindrical adiabatic compression problem

This is a modification of the predictor corrector scheme of [2]. The scheme solves the implicit system
5 Th

� ¼
PP

6 Th
[2] the

volum

referrin
7 See
miðunþ1
i � un

i Þ ¼
X
j2Ji

pjaij; miðvnþ1
i � vn

i Þ ¼
X
j2Ji

pjbij; ð12Þ

xnþ1
i ¼ xn

i þ �uiDt; ynþ1
i ¼ yn

i þ �viDt: ð13Þ

This is solved by simple substitution, keeping the pressures fixed. That is, predict the nodal coordinates in the
right sides of (12) to get predicted �u and �v, and then use (13) to obtain corrected coordinates. Let us call this
the inner consistency iteration. This produces the new cell volumes V nþ1

j which can then be entered in the inter-
nal energy Eq. (6) to get a new internal energy and then a new pressure. But then we can iterate on the pressure
(outer iteration), putting pj ¼ 1

2
ðpnþ1

j þ pn
j Þ. The currently used method does the consistency iteration to con-

vergence,5 and then just one outer corrector iteration.6

4.1. The Coggeshall problem

The ALE-INCUBATOR [3] code is used to obtain the following numerical tests. The code is run without
artificial viscosity and without anti-hourglass forces (see [3] and the references therein), so that only pressure
forces enter the calculation as described in this note.

The choice of numerical tests is limited to tests free of shock waves and hourglass spurious modes; the Cog-
geshall adiabatic compression is described in [6].

The geometry is 2D r–z cylindrical. A sphere of initial radius R = 1.0 is filled with a perfect gas (c = 5/3) in
motion leading to the following exact solution uexðtÞ ¼ � rðtÞ

1�t, vexðtÞ ¼ � zðtÞ
4ð1�tÞ, qex(t) = (1 � t)�9/4,

eexðtÞ ¼ 3zðtÞ
8ð1�tÞ

� �2

. At each boundary, the exact velocity is imposed up to the final time tn = 0.7. Initial and final

meshes can be seen [6].7 We then look at various errors, comparing Consistent control Volume (CV) method,
as described in this note, to the original discrete compatible formulation of Lagrangian hydrodynamics
scheme, referred as in Consistent control Volume method and labeled (iCV) see [1,2]. The grid is rectangular
polar made of nr � nz nodes, and refined several times in r and z directions by a factor 2.

4.2. Entropy, density and specific internal energy errors

For any mesh we compute the error in density q, entropy S and energy e, (the number of cells being nc,
xj = (rj,zj)

t and Q stands for q, S, or e) as
en
Q ¼

1

nc

X
j2J
jQexðxj; tnÞ � Qn

j j=max
j2J
jQexðxj; tnÞj:
Fig. 1 compares the errors en
Q as functions of time (tn 6 0.7) for different mesh sizes. This figure shows that: (i)

errors decrease as the mesh is refined for iCV and CV, (ii) asymptotically, a ratio 2 (first order convergence) is
at is to say if m is the iteration indices and xi = (xi,yi), convergence of the inner consistency iteration is attained if

i2Ikx
mþ1
i �xm

i k
2

i2Ikx
mþ1
i k2 6 10�10.

e predictor corrector scheme from [2] simply does one inner iteration and one outer iteration. In the case of cylindrical geometry, in
Cartesian geometrical vector ~a1 (see Fig. 4, p. 249) is modified into ~a1ð3r1 þ r2Þ=4 on p. 261: This can not fulfill consistency of

es and total energy conservation. In this new method ~a1 is replaced by 1
6

2
3 r�1 þ 1

3 r�2
� �

ð2~a�1 þ~an
1Þ þ 2

3 rn
1 þ 1

3 rn
2

� �
ð~a�1 þ 2~an

1Þ
� �

with *

g to the most updated value from the inner consistency iteration.
Fig. 2, p. 5 for a 20 � 20 mesh of [6].
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Fig. 1. Coggeshall problem on a quarter of a disk in r–z geometry – Entropy (left panels), density (middle panels), energy (right panels) –
L1 errors as functions of time for successively refined meshes 11 � 51 up to 81 � 401 for a CFL condition 1/4. Top: Inconsistent control
Volume (iCV) scheme. Bottom: Consistent control Volume (CV) scheme. The scales for the entropy error plots are different as the
consistent control Volume scheme exhibits a quasi-exact entropy conservation.
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obtained for any variable, (iii) CV is nearly exact for entropy and more accurate for internal energy, but den-
sity accuracy is not increased.

Finally then, we have proposed a staggered Lagrangian numerical scheme with the following properties:

� It is volume consistent: there is no ambiguity in the cell volume definition.
� Total energy is conserved.
� For the adiabatic compression Coggeshall problem, with the artificial viscosity set to zero, cell entropies are

almost exactly conserved.
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